Exam Advanced Logic

April 3rd, 2019

Instructions:

- Put your student number on the first page and subsequent pages (not your name, in order to allow for anonymous grading).
- Do not use pencil (or an erasable pen) or a red pen to make your exam.
- Motivate all your answers.
- Please leave open 10 lines on the first page to give us room for writing down the points.
- Your exam grade is computed as $\min (10$, (the sum of all your points +10) divided by 10). For example, someone who would only fill in a student number would get a 1, while someone who would make questions 1-9 perfectly but would skip the bonus question would get $\min (10$, $(90+10) / 10)=10$.

Good luck!

1. Induction ($\mathbf{1 0} \mathbf{~ p t}$)

Let $\mathscr{L}_{\leftrightarrow}$ be an alternative language of propositional logic based on the operator \leftrightarrow only (so without $\neg, \wedge, \vee, \rightarrow)$.
(a) Give an inductive definition of the well-formed formulas of $\mathscr{L}_{\leftrightarrow}$.
(b) Give an inductive definition of $v(A)$, the truth value of formula A in the language $\mathscr{L}_{\leftrightarrow}$ under valuation v.
(c) Let valuation v_{1} be given such that $v_{1}(p)=1$ for all propositional parameters p. Prove by induction that $v_{1}(A)=1$ for all formulas A in $\mathscr{L}_{\leftrightarrow}$.
(d) Is $\{\leftrightarrow\}$ functionally complete, i.e. is it the case that every formula of propositional logic is equivalent to a formula in $\mathscr{L}_{\leftrightarrow}$? Explain your answer.
2. Three-valued logics ($\mathbf{1 0} \mathbf{~ p t}$) Using a truth table, determine whether the following inference holds in \mathbf{L}_{3} :

$$
\models_{\mathrm{E}_{3}}(p \supset(\neg q \vee q)) \vee((\neg q \vee q) \supset p)
$$

Write out the full truth table and do not forget to draw a conclusion.
3. Tableaux for FDE and related many-valued logics (10 pt) By constructing a suitable tableau, determine whether the following inference is valid in $\mathbf{K}_{\mathbf{3}}$. If the inference is invalid, provide a counter-model.

$$
p \wedge((\neg p \vee q) \wedge(\neg q \vee r)) \vdash_{K_{3}} p \wedge q
$$

NB: Do not forget to draw a conclusion from the tableau.
4. Fuzzy logic ($\mathbf{1 0} \mathbf{~ p t) ~ D e t e r m i n e ~ w h e t h e r ~ t h e ~ f o l l o w i n g ~ h o l d s ~ i n ~ t h e ~ f u z z y ~ l o g i c ~ w i t h ~ s e t ~ o f ~}$ designated values $D_{0.8}=\{x: x \geq 0.8\}$. If so, explain why. If not, provide a counter-model and show why it is one.

$$
(r \rightarrow q) \rightarrow(p \rightarrow r) \models_{0.8} p \rightarrow r
$$

5. Basic modal tableau (10 pt) By constructing a suitable tableau, determine whether the following is valid in K. If the inference is invalid, provide a counter-model.

$$
\square \square q \vdash_{K} \square(p \supset \square q) \wedge(\diamond p \supset \diamond \square q)
$$

NB: Do not forget to draw a conclusion from the tableau.
6. Normal modal tableau (10 pt) By constructing a suitable tableau, determine whether the following tense-logical inference is valid in K_{τ}^{t} (transitive). If the inference is invalid, provide a counter-model.

$$
\langle F\rangle q \vdash_{K_{\tau}^{t}}\langle F\rangle(q \wedge[F] \neg q)
$$

NB: Do not forget to draw a conclusion from the tableau.
7. Soundness and completeness (10pt) As a reminder, the rule φ for tense logic is:

And the auxiliary rules for $=\left(\right.$ that are included in the tense logic tableau system $\left.K_{\varphi}^{t}\right)$ are as follows, where α is a formula of the temporal language:

Let b be a complete open branch of a K_{φ}^{t}-tableau, and let $I=\langle W, R, v\rangle$ be an interpretation that is induced by b. Show that the accessibility relation R of I is forward convergent, that is, for all $x, z, y \in W$, if $x R y$ and $x R z$, then $(z R y$ or $y=z$ or $y R z)$.
8. First-order modal tableau, variable domain (10 pt) By constructing a suitable tableau, determine whether the following is valid in $V K$. If the inference is invalid, provide a countermodel.

$$
\forall x \square \forall y P x y \vdash_{V K} \forall x \forall y \square P x y
$$

NB: Do not forget to draw a conclusion from the tableau.

9. Default logic (10 pt)

Consider the following set of default rules, where p, q, r, s are propositional atoms:

$$
D=\left\{\delta_{1}=\frac{p: q \wedge r}{s}, \quad \delta_{2}=\frac{p: q \wedge \neg r}{\neg r}, \quad \delta_{3}=\frac{s: \neg q}{\neg q}\right\}
$$

and initial set of facts:

$$
W=\{p\} .
$$

This exercise is about the default theory $T=(W, D)$.
(a) Of each of the following sequences, state whether it is a process; and if so, whether or not the process is closed, and whether or not it is successful. Briefly explain your answers.
i. $\left(\delta_{1}\right)$
ii. $\left(\delta_{1}, \delta_{2}\right)$
(b) Draw the process tree of the default theory (W, D).
(c) What are the extensions of (W, D) ?
(d) Is $q \wedge s$ a credulous consequence of (W, D) ? Explain.
10. Bonus ($\mathbf{1 0} \mathbf{~ p t}$) As a reminder, the RM_{3} tableau rules for \supset are as follows

$$
\neg(A \supset B),+\quad B \wedge \neg B,+
$$

Consider the language of FDE, containing the connectives \neg, \vee, \wedge. Does the following statement hold for all wffs A, B, C in that language?
"If $A \vdash_{K_{3}} \neg B \vee C$ and $A \vdash_{R M_{3}} B \supset C$, then $A \vdash_{F D E} \neg B \vee C$ "

If yes, please explain exactly why the statement holds for all wffs A, B, C in the language of FDE. If no, please provide a triple of wffs A, B, C and show in detail why that triple forms a counterexample to the statement.

